• 
    <ul id="o6k0g"></ul>
    <ul id="o6k0g"></ul>

    商標圖像查詢方法技術

    技術編號:11188078 閱讀:93 留言:0更新日期:2015-03-25 16:54
    本發明專利技術提供了一種商標圖像查詢方法,包括以下步驟:提取商標圖像數據庫中每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據模型圖像的邊緣形狀特征信息判斷該模型圖像的復雜度,并按照復雜度將模型圖像分為一個以上的群組,群組中的每一模型圖像具有其對應的特征信息;提取待查詢圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據待查詢圖像的邊緣形狀特征信息判斷該待查詢圖像的復雜度,以確定該待查詢圖像所屬的群組;以及根據待查詢圖像的特征信息在該待查詢圖像所屬的群組中進行相似度查詢,獲得相似度查詢結果。本發明專利技術提供的商標圖像查詢方法在保證準確率的同時可大大提高圖像檢索效率。

    【技術實現步驟摘要】

    本專利技術涉及圖像檢索技術,具體地,涉及一種。
    技術介紹
    商標是公司、產品或服務的標志,與企業的商品質量、服務質量、經營管理融為一 體,在工商業社會中起著非常重要的作用,是公司及其產品的一個重要屬性,具有唯一性。 為使商標得到合法的保護,必須向商標局正式注冊。隨著我國經濟的發展和全球化進程的 加快,商標數量逐年遞增。防止重復注冊或相似商標注冊是商標管理的核心問題。為了保護 注冊商標的合法權益,打擊仿冒盜用注冊商標的違法行為,需要對待注冊的商標進行查詢, 與已注冊的商標進行比較,確定二者不相同或者不相近似,才具有注冊資格。商標之間相似 程度主要以人眼的視覺判斷為基準,但商標數據庫內注冊商標的數量十分龐大,判別工作 若全部由人工完成,不僅復雜而且效率低下。 國內外許多學者都對商標圖像的查詢方法進行了較深入的研宄。現有的商標查詢 方法可劃分為三種:類目檢索、文本檢索和基于內容的檢索。基于內容的商標檢索出現較 晚,仍存在許多問題亟待解決。特別地,由于商標圖像數量巨大,內容繁復,在保證準確率的 前提下往往難以兼顧檢索效率。
    技術實現思路
    本專利技術的目的是針對現有的商標檢索技術中由于商標圖像數量巨大,內容繁復, 導致檢索效率低下的問題,提供一種能夠在保證準確率的前提下大大提高檢索效率的商標 圖像查詢方法。 根據本專利技術的技術方案,提供一種,該方法包括以下步驟:提 取商標圖像數據庫中每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他 特征信息;根據模型圖像的邊緣形狀特征信息判斷該模型圖像的復雜度,并按照所述復雜 度將所述模型圖像分為一個以上的群組,群組中的每一模型圖像具有其對應的特征信息; 提取待查詢圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據所 述待查詢圖像的邊緣形狀特征信息判斷該待查詢圖像的復雜度,以確定該待查詢圖像所屬 的群組;以及根據所述待查詢圖像的特征信息,在該待查詢圖像所屬的群組中進行相似度 查詢,獲得相似度查詢結果。 根據本專利技術的技術方案,首先對商標圖像數據庫中的模型圖像進行分組,該分組 方式為根據每一模型圖像的邊緣形狀特征信息來確定該模型圖像的復雜度,其中所述復雜 度由邊緣形狀特征信息中構成圖像邊緣的像素點的數量來決定,之后按照模型圖像的復雜 度將商標圖像數據庫中的模型圖像分為一個以上的群組,群組中的模型圖像具有其各自對 應的特征信息。在商標圖像查詢過程中,首先根據待查詢圖像的復雜度來確定該待查詢圖 像所屬的群組,之后將待查詢圖像與該待查詢圖像所屬的群組中的模型圖像進行一一比 對,以進行圖像的相似度查詢,其中待查詢圖像的復雜度也是由其邊緣形狀特征信息來確 定的。 采用本專利技術提供的,由于首先按照圖像的復雜度對商標圖像數 據庫中的模型圖像進行了分組,在商標圖像查詢過程中,根據待查詢圖像的復雜度,僅在待 查詢圖像所屬的群組中進行相似度查詢,而無需在整個圖像數據庫中進行查詢,縮短了查 詢時間,由此,在保證準確率的同時大大提高了圖像檢索效率。 本專利技術的其他特征和優點將在隨后的【具體實施方式】部分予以詳細說明。 【附圖說明】 附圖是用來提供對本專利技術的進一步理解,并且構成說明書的一部分,與下面的具 體實施方式一起用于解釋本專利技術,但并不構成對本專利技術的限制。在附圖中: 圖1是本專利技術提供的的流程示意圖。 【具體實施方式】 以下結合附圖對本專利技術的【具體實施方式】進行詳細說明。應當理解的是,此處所描 述的【具體實施方式】僅用于說明和解釋本專利技術,并不用于限制本專利技術。 本專利技術提供了一種,如圖1所示,該方法包括以下步驟:提取商 標圖像數據庫中每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征 信息;根據模型圖像的邊緣形狀特征信息判斷該模型圖像的復雜度,并按照所述復雜度將 所述模型圖像分為一個以上的群組,群組中的每一模型圖像具有其對應的特征信息;提取 待查詢圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據所述待 查詢圖像的邊緣形狀特征信息判斷該待查詢圖像的復雜度,以確定該待查詢圖像所屬的群 組;以及根據所述待查詢圖像的特征信息,在該待查詢圖像所屬的群組中進行相似度查詢, 獲得相似度查詢結果。 根據本專利技術的技術方案,為了方便特征比較,保證圖像尺寸和格式的統一性以及 清晰度,對商標圖像數據庫中的模型圖像進行特征信息提取之前,需要對所述模型圖像進 行預處理,所述預處理包括圖像的灰度化、歸一化和濾波處理。 將彩色圖像轉化成灰度圖像的過程稱為圖像的灰度化處理。彩色圖像中每個像素 的顏色由R、G、B三個分量決定,而每個分量有255中值可取,這樣一個像素點可以有1600 多萬(255*255*255)的顏色的變化范圍。而灰度圖像是R、G、B三個分量相同的一種特殊 的彩色圖像,其一個像素點的變化范圍為255種,在數字圖像處理中,通常先將各種格式的 圖像轉變成灰度圖像,以使后續圖像的計算量變得少一些。灰度圖像的描述與彩色圖像一 樣,仍然反映了整幅圖像的整體和局部的色度和亮度等級的分布和特征。圖像灰度化處理 的常用方法有分量法、最大值法及加權平均法等,其原理及計算過程為本領域技術人員所 公知。 圖像的歸一化是通過一系列變換(即利用圖像的不變矩尋找一組參數使其能夠 消除其他變換函數對圖像變換的影響),將待處理的原始圖像轉換成相應的唯一標準形式 (該標準形式圖像對平移、旋轉、縮放等仿射變換具有不變特性)。由于商標圖像數據庫中 的模型圖像通常具有不同的格式和尺寸,為了方便特征比較,需要對其中的模型圖像進行 歸一化處理。模型圖像的格式轉換可以采用格式化軟件提前進行處理,并通過尺寸歸一化 將模型圖像縮放為同一尺寸。根據本專利技術的技術方案,可以將商標圖像數據庫中的模型圖 像的高度和寬度設為256個像素點。 為了保證圖像的清晰度,還需要對模型圖像進行濾波處理。根據本專利技術的技術方 案,可以采用中值濾波(一種非線性平滑技術,其基本原理是將數字圖像或數字序列中一 點的值用該點的一個鄰域中各點值的中值代替,讓周圍的像素值接近真實值,從而消除孤 立的噪聲點)對圖像進行濾波處理。 根據本專利技術的技術方案,在對模型圖像進行預處理之后,提取商標圖像數據庫中 每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息。 其中,所述邊緣形狀特征信息的提取采用以下邊緣檢測算法中的一種實現:Sobel 算子邊緣檢測、Roberts算子邊緣檢測、Prewitt算子邊緣檢測、Laplacian算子邊緣檢測、 以及Canny算子邊緣檢測。 所謂邊緣,是指其周圍像素灰度急劇變化的那些象素的集合,邊緣存在于目標、 背景和區域之間,是圖像最基本的特征。 USobel算子邊緣檢測 [0021 ] Sobel算子主要用于邊緣檢測,在技術上是以離散型的差分算子,用以運算圖像亮 度函數的梯度的近似值,Sobel算子是典型的基于一階導數的邊緣檢測算子,由于該算子中 引入了類似局部平均的運算,因此對噪聲具有平滑作用,能很好的消除噪聲的影響。 Sobel算子包含兩組3x3的矩陣,分別為橫向及縱向模板,將之與圖像作平面卷 積本文檔來自技高網...
    <a  title="商標圖像查詢方法原文來自X技術">商標圖像查詢方法</a>

    【技術保護點】
    一種商標圖像查詢方法,其特征在于,該方法包括以下步驟:提取商標圖像數據庫中每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據模型圖像的邊緣形狀特征信息判斷該模型圖像的復雜度,并按照所述復雜度將所述模型圖像分為一個以上的群組,群組中的每一模型圖像具有其對應的特征信息;提取待查詢圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息;根據所述待查詢圖像的邊緣形狀特征信息判斷該待查詢圖像的復雜度,以確定該待查詢圖像所屬的群組;以及根據所述待查詢圖像的特征信息,在該待查詢圖像所屬的群組中進行相似度查詢,獲得相似度查詢結果。

    【技術特征摘要】
    1. 一種商標圖像查詢方法,其特征在于,該方法包括w下步驟: 提取商標圖像數據庫中每一模型圖像的特征信息,該特征信息包括邊緣形狀特征信息 和其他特征信息; 根據模型圖像的邊緣形狀特征信息判斷該模型圖像的復雜度,并按照所述復雜度將所 述模型圖像分為一個W上的群組,群組中的每一模型圖像具有其對應的特征信息; 提取待查詢圖像的特征信息,該特征信息包括邊緣形狀特征信息和其他特征信息; 根據所述待查詢圖像的邊緣形狀特征信息判斷該待查詢圖像的復雜度,W確定該待查 詢圖像所屬的群組;W及 根據所述待查詢圖像的特征信息,在該待查詢圖像所屬的群組中進行相似度查詢,獲 得相似度查詢結果。2. 根據權利要求1所述的方法,其特征在于,該方法還包括W下步驟: 在特征信息提取之前,對圖像進行預處理。3. 根據權利要求2所述的方法,其特征在于,所述預處理包括圖像的灰度化、歸一化和 濾波處理。4. 根據權利要求3所述的方法,其特征在于,所述模型圖像與所述待查詢圖像具有相 同的像素值,所述復雜度由所述邊緣形狀特征信息中...

    【專利技術屬性】
    技術研發人員:孔軍民
    申請(專利權)人:北京中細軟移動互聯科技有限公司
    類型:發明
    國別省市:北京;11

    網友詢問留言 已有0條評論
    • 還沒有人留言評論。發表了對其他瀏覽者有用的留言會獲得科技券。

    1
    主站蜘蛛池模板: 69堂人成无码免费视频果冻传媒| 国产真人无码作爱免费视频| 亚洲中文无码永久免费| 少妇久久久久久人妻无码| 精品无人区无码乱码大片国产| 久久久久无码专区亚洲av| 久久人妻少妇嫩草AV无码专区| 亚洲AV无码一区二三区| 中文无码热在线视频| 国产高清无码二区 | 亚洲国产成人精品无码区在线秒播 | 国产做无码视频在线观看| 无码人妻品一区二区三区精99| 日韩精品无码成人专区| 亚洲精品无码aⅴ中文字幕蜜桃| 潮喷无码正在播放| 无码人妻少妇伦在线电影| 亚洲成av人无码亚洲成av人| 无码av最新无码av专区| 中文无码AV一区二区三区| 久久久精品人妻无码专区不卡| 亚洲精品久久无码av片俺去也| 亚洲国产日产无码精品| 亚洲av日韩av无码黑人| 夜夜添无码一区二区三区| 日韩精品无码一区二区三区四区| 人妻精品久久无码区洗澡| mm1313亚洲国产精品无码试看| 无码人妻一区二区三区一| 久久久久无码精品国产不卡| 亚洲AV日韩AV永久无码下载| 亚洲欧洲日产国码无码网站| 亚洲精品无码AV人在线播放| 国产成人无码一区二区在线播放| 人妻中文无码久热丝袜| 东京热av人妻无码专区| 亚洲AV无码精品色午夜在线观看| 亚洲AV无码国产丝袜在线观看 | 久久无码专区国产精品发布| 久久亚洲AV成人无码国产| 精品国精品无码自拍自在线|